

 ARL-TR-7540 ● NOV 2015

 US Army Research Laboratory

Analyzing GAIAN Database (GaianDB) on a
Tactical Network

by Ryan Sheatsley and Andrew Toth

Approved for public release; distribution is unlimited.

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-TR-7540 ● NOV 2015

 US Army Research Laboratory

Analyzing GAIAN Database (GaianDB) on a
Tactical Network

by Ryan Sheatsley and Andrew Toth
Computational and Information Sciences Directorate, ARL

Approved for public release; distribution is unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid
OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

November 2015
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

07/2015–09/2105
4. TITLE AND SUBTITLE

Analyzing GAIAN Database (GaianDB) on a Tactical Network
5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Ryan Sheatsley and Andrew Toth
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

US Army Research Laboratory
ATTN: RDRL-CIN-T
2800 Powder Mill Road
Adelphi, MD 20783-1138

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-TR-7540

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This report covers the integration of the GAIAN Database (GaianDB) with the second-generation common sensor radio
(CSR). Performing measurements with the second-generation CSRs, we discovered that Internet Protocol (IP) encapsulation
of GaianDB traffic in radio frequency (RF) transmissions added minimal overhead to RF networks, and we observed high
percentages of query success across our tests and a reasonable performance impact on query round trip time. In this report, we
first provide background concerning GaianDB and the CSRs, and how these 2 pieces fit with the current scope of the Army.
Next, we state our goals and how we accomplished them. Afterwards, we describe our experimentation, including setup, tests,
and results. Finally, we conclude with an interpretation of our results and describe future goals.

15. SUBJECT TERMS

Gaian Database, GaianDB, Tactical

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

18

19a. NAME OF RESPONSIBLE PERSON

Andrew Toth
a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified
19b. TELEPHONE NUMBER (Include area code)

301-394-2746
 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

Approved for public release; distribution is unlimited.

iii

Contents

List of Figures iv

List of Tables iv

Acknowledgments v

1. Introduction 1

2. Implementation 1

3. Experimentation 4

4. Conclusion 6

5. Current and Future Activities 7

6. References 8

List of Symbols, Abbreviations, and Acronyms 9

Distribution List 10

Approved for public release; distribution is unlimited.

iv

List of Figures

Fig. 1 GaianDB communication over the CSRs ..2

Fig. 2 Experimental setup using 3 CSRs and Raspberry Pi’s running
splatform and GaianDB ..5

List of Tables

Table 1 Average TETs comparing the CSR and CORE networks6

Approved for public release; distribution is unlimited.

v

Acknowledgments

The primary author would like to thank Andrew Toth for his mentorship, guidance,
and encouragement throughout this project; Ron Tobin for providing test radios and
giving us a technical background on the common sensor radios; Peter Lawrence for
the serial platform code we augmented without which this project would have not
been possible; Theron Trout who helped identify evasive bugs and provided
recommendations for alternative standard C functions from legacy functions; and
Mark Reinsfelder who set up the environment we used to perform our research and
experiments, as well as provided insights on network configurations.

Approved for public release; distribution is unlimited.

vi

INTENTIONALLY LEFT BLANK.

Approved for public release; distribution is unlimited.

1

1. Introduction

The GAIAN database (GaianDB) is a dynamic distributed federated database
written in Java. This biologically inspired database automatically discovers other
GaianDB nodes, creating an ad-hoc network based on metrics that contribute to a
value called the fitness factor of a node creating a topology that is independent of
the underlying network topology. GaianDB nodes federate 1 or more data sources,
which may include plain text, relational database management system (RDBMS)
databases, and other files, and exposes them as 1 unified structured query language
(SQL)-compliant data source. This “store locally query anywhere” (SLQA)
approach reduces overhead associated with replication of databases by leaving the
data at their source and only retrieving them when needed. GaianDB also features
query caching, an explain-network-route query option, and dynamic configuration.
A small 4-MB footprint and support for ad-hoc network formation make GaianDB
an appropriate database for sensors connected to tactical networks.1

The common sensor radio (CSR) is a military mesh network radio for use with
unattended sensors. The radios are highly energy efficient; they are designed to
function for lengthy periods of time before requiring battery replacement. Much
like GaianDB, the CSRs have built-in discovery commands, which initialize the ad-
hoc network.

A challenge that the Army faces today is how to maintain battery efficiency and
performance in locations with active adversaries. Presently, sensors will transmit
data as they receive them to a central base for processing. Imagine if multiple radios
were collecting and sending sensor data to central base continuously. Not only
could there be a significant impact on radio battery life, but the radio frequency
(RF) networks themselves could become slow or unresponsive with their finite
bandwidth. To solve this, the CSRs could manage their own sensor data and send
information back to a central base when requested. At the cost of a sustained
increased energy consumption, we perform a tradeoff of lower network bandwidth
consumption and burst energy consumption. GaianDB allows us to perform this
tradeoff when coupled with the CSRs.

2. Implementation

Figure 1 shows an image describing how GaianDB communicates over the CSRs
with our implementation.

Approved for public release; distribution is unlimited.

2

Fig. 1 GaianDB communication over the CSRs

An obstacle we had to overcome was how we would integrate the GaianDB with
the CSR. Our challenge was to answer the following questions:

• What protocol does GaianDB use?

• How does GaianDB establish and maintain connections?

• How could we interface GaianDB with the CSRs?

• How do we determine if integrating GaianDB with the CSRs is feasible?

To start, we used low-level networking tools to see the traffic coming in and out of
a host running GaianDB. Upon application startup, we observed Internet Group
Management Protocol (IGMP) traffic on our network coming from the GaianDB
node. GaianDB uses IGMP to establish multicast group memberships.
Interestingly, we also observed multicast group requests on all network interfaces.
GaianDB does not pick one interface to transmit traffic through exclusively, which
turned out to be a behavior we’d exploit later on.

Once another GaianDB node appears on the network and also joins the multicast
group, the GaianDB nodes will (depending upon their configuration files) stop
sending out multicast group requests and begin to directly communicate one
another via either Transmission Control Protocol (TCP) or User Datagram Protocol
(UDP) network protocols. Afterwards, if a GaianDB node drops out of the network
(again, depending upon a node’s configuration file), the remaining node will revert
back to broadcasting multicast group membership messages to obtain another
GaianDB connection.

Approved for public release; distribution is unlimited.

3

After we understood the basic operation of GaianDB from initialization to process
termination, we revisited our initial problem with new approaches on how to solve
it. Our first approach involved modifying the GaianDB source code to
communicate with a TCP/UDP server that could communicate directly with the
CSRs via the CSR’s serial port. However, GAIAN has over 800,000 lines of source
code. It initiates and terminates TCP/IP connections in multiple locations
throughout its runtime, and has complex logic for timeouts, caching, and multicast
group management, by which all would have to be modified to communicate with
our server and maintain utility. Not only did we quickly realize that this approach
would be infeasible with the short 8 weeks we had, but this would also affect the
core functionality of GaianDB and would require modifications to any subsequent
updates to GAIAN. Instead, we had to create a cleaner and more modular solution
to the problem.

Our next approach was to implement a packet sniffer that would capture outgoing
GaianDB traffic, pipe packets through the radios by leveraging code we used last
summer to prove the CSRs could be IP-enabled, and finally send the packets to the
appropriate network interface card (NIC) connected to a host running GaianDB.
Unfortunately, this approach did not work. We were able to successfully capture
outgoing packets and send them over the radio, but we were not able to send a
packet to another NIC. When we “sent” a packet to a remote host, we observed that
the remote NIC reported that it sent that packet, instead of receiving it. We believe
some fields at the link layer were changed when we sent the packet to the remote
host that caused this behavior. Thus, we were unable to instigate a response from
GaianDB running on the remote host.

After we realized this shortcoming in our implementation, we sought for new
solutions to our hurdle. In a couple of days, we came across a standard library in C
that could be used to create virtual network kernel devices, which uses the network
tunnel (TUN)/network tap (TAP)2 kernel module in most UNIX-based systems.
The TUN portion of the module emulates a network layer device and operates with
layer 3 (e.g., IP) packets. Conversely, the TAP emulates a link layer device and
operates with layer 2 (e.g., Ethernet frames) packets. A TUN is used to establish
host-to-host communication with Point-to-Point Protocol over Ethernet (PPPoE),
while a TAP is used to create a network bridge or, in our case, create an ad-hoc
network by encapsulating raw packets (which contain preambles and Ethernet
frames) inside CSR packets.

Thus, we leveraged some code we used last summer, which was originally written
by the CSR development team as a “just-add-water” solution to communicating
with the radios through their serial ports called splatform (serial platform), and

Approved for public release; distribution is unlimited.

4

augmented it with a TAP. On application startup, our process would use the
TUN/TAP kernel module to create a dummy network interface that would appear
as “tap0” in the list of available NICs. Our first indication of success, was observing
GaianDB send IGMP packets to all network interfaces, including our tap0 interface.
By exploiting this behavior, we were able to direct GaianDB to always
communicate with our dummy interface without touching any of the underlying
GaianDB functionality.

The TAP interface is simple in nature: all incoming traffic sent to the dummy
interface is piped to a character device in /dev/net/ called either tap or tun,
depending upon how the kernel module is configured. Afterwards, in our
application, we can read data from this character device through familiar file
input/output (I/O) operations, like read and write. After a packet is sent to our
local tap0 interface, we can perform a read on the file descriptor associated with
our tap character device, pipe the packet through the code Peter Lawrence wrote,
and finally execute a write on the remote node’s character device once it receives
our packet. From there, we again used low-level networking tools to verify
incoming and outgoing packets through our TAP interface. Remote GaianDB nodes
would see the incoming multicast group membership packets, promptly join the
multicast group, and begin to communicate directly with another GaianDB node.

As far as GaianDB is concerned, it is communicating to another node via IPv4, its
native protocol for communication. Any GaianDB node is completely agnostic to
the fact that, in reality, it is communicating over RF. Thus, we have achieved our
minimally invasive and modular solution to our GaianDB and CSR integration
question.

3. Experimentation

Our experiment setup (Fig. 2) is a network of 3 CSRs and Raspberry Pi’s running
our augmented splatform and GaianDB.

Approved for public release; distribution is unlimited.

5

Fig. 2 Experimental setup using 3 CSRs and Raspberry Pi’s running splatform and
GaianDB

Once we finalized our implementation, we could now formally analyze how
GaianDB would perform on a tactical network. To perform our experiments, we
connected 3 Raspberry Pi’s running GaianDB and our augmented version of
splatform to a network of 3 CSRs. The Raspberry Pi is a low power, low cost,
small form factor computer measuring 85.60 mm x 56 mm x 21 mm and weighing
45 g. The device runs a distribution of the Linux operating system based on Debian
from a connected secure digital high capacity (SDHC) card or a universal serial bus
(USB) device. The Raspberry Pi comes equipped with an Ethernet port, high-
definition multimedia interface (HDMI) and general purpose input/output (GPIO)
connections.3 The combination of size, power requirements, capabilities, and cost
make the Raspberry Pi a useful device for sensor experimentation. From there, we
performed 3 types of benchmarks (burst, sustained, and extended) and measured
total execution time (TET) as well as query success rate. We define TET as the time
between when a query is sent and a response is received on a local node and query
success rate (QSR) as the ratio of receiving all data from both remote nodes versus
the total number of queries made on a local node.

In the burst benchmark, we sent queries simultaneously in a short period of time in
a remote node. In the sustained benchmark, we sent queries in a serial fashion: once
a remote node received a query and began to send back data, it would receive
another one. In the extended benchmark, we would only send another request once
data had been received plus a period of time of total inactivity. Across all
benchmarks, we sent a total of 30 queries from 1 local node connected to 2 remote
nodes.

Approved for public release; distribution is unlimited.

6

Finally, we performed the same set of experiments in an emulated network in
CORE, the common open research emulator developed by the US Navy Research
Laboratory3 with 3 virtual nodes running GaianDB with emulated wireless NICs.
We compared the differences in TET between the emulated network and our CSR
network to see if there would be a tangible impact on GaianDB performance when
using IP encapsulation through RF. In our results (Table 1), we observed the
following average TETs.

Table 1 Average TETs comparing the CSR and CORE networks

Test Type CSR Network CORE Network
TET QSR TET QSR

Burst 7,000 ms 73% 900 ms 100%
Sustained 10,000 ms 85% 1,000 ms 100%
Extended 12,000 ms 90% 1,100 ms 100%

4. Conclusion

Initially, we had concerns that flooding the CSR network would have a significant
impact on QSR, but we observed a negligible decrease in our results. GaianDB’s
ability to cache recent queries had a substantial impact on the QSRs across all tests
in the CSR network; each test exhibited an average of <35% QSR in the first 6
queries. By the 15th query, the average QSR for each test rose to between 50% and
75%. It is worth mentioning that, in all tests, the last 12 queries made were 100%
successful. On the subject of TET, while our results show an increase by a factor
of 8 to 10, we can conclude that such latencies would not have a significant impact
on a Soldier as delays are common in tactical networks due to their ad-hoc nature.

Thus, we can conclude from our results that there is a negligible impact on QSR
and a reasonable delay in TET of the GaianDB when paired with the CSRs. While
our emulated results were faster than our CSR network, the emulated nodes had
hardware that far surpassed the low-end hardware found in the Raspberry Pi’s; the
emulated nodes had more than double the random access memory (RAM), double
the number of central processing unit (CPU) cores, and double the CPU frequency.
Even with the increased latency, we observed minimal query failure (when a query
is made, yet no data are returned), which may suggest that formal integration
between the GaianDB and CSRs is feasible and practical. However, this is only a
preliminary indicator. More research is necessary to conclude if formal integration
should be pursued. Currently, there are performance enhancements that can be done
to improve our results:

Approved for public release; distribution is unlimited.

7

• splatform does not support multicast protocols. We had to use a broadcast
protocol, adding redundant traffic to the network, which may have had a
negative impact on our results.

• Raspberry Pi does not support multi-queue flag options. When creating the
TUN/TAP interface, a multi-queue flag can be specified to enable
simultaneous reads and writes to the character device to increase
throughput. Currently, the Raspberry Pi does not support this flag, so we
had to serialize our reads and writes, which may have also had a negative
impact on our results.

5. Current and Future Activities

In the future, we would like to improve our implantation by completing the
performance enhancements listed above. Additionally, we would like to perform a
finer granularity of experimentation concerning integration practicality and
feasibility. We suggest performing experiments on throughput using tcpstat,
increasing our network node count from 3 to 10+, measure query failure rates based
on CSR topology, among other metrics. While our initial results seem promising,
performing these experiments will give us a better indication if formal integration
between GaianDB and CSRs may be of interest to the Army.

Approved for public release; distribution is unlimited.

8

6. References

1. GAIAN Database – An overview [accessed 2015].
https://www.ibm.com/developerworks/community/groups/service/html/com
munityview?communityUuid=f6ce657b-f385-43b2-8350-458e6e4a344f.

2. Universal TUN/TAP device driver [accessed 2015].
https://www.kernel.org/doc/Documentation/networking/tuntap.txt.

3. Raspberry Pi Computer [accessed 2015]. https://www.raspberrypi.org.

4. Common Open Research Emulator (CORE) [accessed 2015].
http://www.nrl.navy.mil/itd/ncs/products/core.

https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=f6ce657b-f385-43b2-8350-458e6e4a344f
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=f6ce657b-f385-43b2-8350-458e6e4a344f
https://www.kernel.org/doc/Documentation/networking/tuntap.txt
https://www.raspberrypi.org/
http://www.nrl.navy.mil/itd/ncs/products/core

Approved for public release; distribution is unlimited.

9

List of Symbols, Abbreviations, and Acronyms

CPU central processing unit

CSR common sensor radio

GaianDB GAIAN database

GPIO general purpose input/output

HDMI high-definition multimedia interface

I/O input/output

IGMP Internet Group Management Protocol

NIC network interface card

PPPoE Point-to-Point Protocol over Ethernet

QSR query success rate

RAM random access memory

RDBMS relational database management system

RF radio frequency

SDHC secure digital high capacity

SLQA store locally query anywhere

SQL structured query language

TAP network tap

TCP Transmission Control Protocol

TET total execution time

TUN network tunnel

UDP User Datagram Protocol

USB universal serial bus

Approved for public release; distribution is unlimited.

10

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 2 DIRECTOR
 (PDF) US ARMY RESEARCH LAB
 RDRL CIO LL
 IMAL HRA MAIL & RECORDS
 MGMT

 1 GOVT PRINTG OFC
 (PDF) A MALHOTRA

 4 US ARMY RESEARCH LAB
 (PDF) RDRL CIN
 A KOTT
 RDRL CIN T
 R SHEATSLEY
 A TOTH
 B RIVERA

	List of Figures
	List of Tables
	Acknowledgments
	1. Introduction
	2. Implementation
	3. Experimentation
	4. Conclusion
	5. Current and Future Activities
	6. References
	List of Symbols, Abbreviations, and Acronyms

